# Monoids are not demode and thursdays are actually the new fridays

No, it’s not the latest Coixet’s movie title. When we talk about cathegories like monoids, we tend to think they just remain on the edge as something merely experimental (even though purely functional) and there’s no direct application at the real world. Something similar happened when you learnt square roots at school and there was no proper moment to start using them at real life…

## The use case

This morning, ah naïve me, I tried to make this work:

```type Passengers = Int
type MaxCapacity = Passengers
type Plane = (Passengers, MaxCapacity)

val planes: List[Plane] =
List(1 -> 1, 2 -> 3, 3 -> 3)

val (totalPassengers, totalCapacity) =
planes.sum
//  ERROR: Could not find implicit value
//  for parameter num: Numeric[(Int, Int)]
```

Ok, fair enough, Scala needs something, an evidence, for adding integer tuples.
Before we start fighting with the ‘evidence’, let’s try to make it work in a more mechanical way:

```val sum = ((0,0) /: planes){
case ((totalPas,totalCap), (passengers, capacity)) =>
(totalPas + passengers, totalCap + capacity)
}
```

Okay, it works. But it should be simpler, so let’s get back to the idea of `Numeric[N]` evidence.

## Implementing `Numeric[N]`

We need a `Numeric[(A,B)]` but before implementing it (it has a lot of abstract methods) let’s sweep under the rug all those methods we don’t really want to focus on in this example. For doing so, let’s create an intermediate layer that keeps all those method without an implementation (which doesn’t mean ‘abstract’):

```trait LeanNumeric[T] extends Numeric[T] {
override def fromInt(x: Int): T = ???
override def toInt(x: T): Int = ???
override def minus(x: T, y: T): T = ???
override def times(x: T, y: T): T = ???
override def negate(x: T): T = ???
override def toLong(x: T): Long = ???
override def toFloat(x: T): Float = ???
override def toDouble(x: T): Double = ???
override def compare(x: T, y: T): Int = ???
}
```

Let’s call this abomination LeanNumeric (it only contains the essentials to develop our example). And now, we can define the method that generates the evidence for any `Tuple2`:

```implicit def numeric[A, B](
implicit nA: Numeric[A],
nB: Numeric[B]): Numeric[(A, B)] = {
new LeanNumeric[(A, B)]{
override def zero = (nA.zero, nB.zero)
override def plus(x: (A, B), y: (A, B)): (A, B) = {
val (a1, b1) = x
val (a2, b2) = y
(nA.plus(a1, a2), nB.plus(b1, b2))
}
}
}
```

If we put the implicit into scope and we run again `planes.sum`…boom! Magic.

## Num…oid

We don’t have to master category theory to realize that `Numeric[N]` may be a thousand of things, but it satisfies at least two properties:

• The append operation: The sum operation – given n1 and n2 of type N, it return a new N element. Only because of this feature(and the closure, associativity, commutative, …) we can consider it a Semigroup.

• And additionally the zero element

Seriously? Isn’t it obvious enough? My dear friends, monoid is back in town!

## Implementation with `scalaz.Monoid`

Having in mind that Numeric has (at least) these two properties, let’s re-implement the implicit by using scalaz Monoid. We first define the monoid for integers and the tuple monoid which requires a monoid for each type that compounds the tuple (easy peasy):

```import scalaz._

implicit object IntMonoid extends Monoid[Int]{
override def zero: Int = 0
override def append(f1: Int, f2: => Int): Int = f1 + f2
}

implicit def tupleMonoid[A,B](
implicit mA: Monoid[A],
mB: Monoid[B]): Monoid[(A,B)] = {
new Monoid[(A, B)] {
override def zero: (A, B) = (mA.zero, mB.zero)
override def append(f1: (A, B), f2: => (A, B)): (A, B) = {
val (a1, b1) = f1
lazy val (a2, b2) = f2
(mA.append(a1,a2), mB.append(b1, b2))
}
}
}
```

So good so far, right?

After that, we implement the implicit that will provide a Numeric as long as there’s a Monoid for the type

```implicit def numeric[T](
implicit m: Monoid[T]): Numeric[T] = {
new LeanNumeric[T]{
override def zero = m.zero
override def plus(x: T, y: T): T = m.append(x, y)
}
}

planes.sum //(6,7)
```

And it’s awesomely easy to get abstract of whatever T means (a tuple? a dog? …). As long as it’s a monoid, you can define a LeanNumeric.

You can find here the gist.

See you in the next functional madness.

Peace out!

# Los monoides no están demodé y los jueves sí son los nuevos viernes

No, no es el título de la nueva película de Coixet. Cuando hablamos de categorías como los monoides, tendemos a pensar que se quedan en el ámbito de lo experimental (aunque funcionalmente puro) y que no existe aplicación directa sobre el mundo real. Algo parecido a lo que ocurría cuando te enseñaban a hacer raíces cuadradas en el colegio y no veías el momento para usarlo en la vida real…

## El caso de uso

Esta misma mañana, ingenuo de mi, intentaba hacer que funcionara lo siguiente:

```type Passengers = Int
type MaxCapacity = Passengers
type Plane = (Passengers, MaxCapacity)

val planes: List[Plane] =
List(1 -> 1, 2 -> 3, 3 -> 3)

val (totalPassengers, totalCapacity) =
planes.sum
//  ERROR: Could not find implicit value
//  for parameter num: Numeric[(Int, Int)]
```

Vale, comprensible, Scala necesita algo, una evidencia, para poder sumar tuplas de enteros.
Antes de pegarnos con la “evidencia”, intentemos hacerlo funcionar de una manera mucho más mecánica:

```val sum = ((0,0) /: planes){
case ((totalPas,totalCap), (passengers, capacity)) =>
(totalPas + passengers, totalCap + capacity)
}
```

Okay, funciona. Pero debería ser algo más simple, por lo que retomemos la idea de la evidencia `Numeric[N]`.

## Implementando `Numeric[N]`

Necesitamos un `Numeric[(A,B)]` pero antes de implementarlo (tiene bastantes métodos abstractos) escondamos debajo de la alfombra aquellos métodos en los cuales no queremos centrarnos en este ejemplo. Para ello creamos una capa por encima que deje los métodos sin implementar (que no abstractos):

```trait LeanNumeric[T] extends Numeric[T] {
override def fromInt(x: Int): T = ???
override def toInt(x: T): Int = ???
override def minus(x: T, y: T): T = ???
override def times(x: T, y: T): T = ???
override def negate(x: T): T = ???
override def toLong(x: T): Long = ???
override def toFloat(x: T): Float = ???
override def toDouble(x: T): Double = ???
override def compare(x: T, y: T): Int = ???
}
```

A esta aberración la llamaremos LeanNumeric (solo contiene lo esencial para desarrollar nuestro ejemplo). Y ahora definimos el método que genera la evidencia para cualquier `Tuple2`:

```implicit def numeric[A, B](
implicit nA: Numeric[A],
nB: Numeric[B]): Numeric[(A, B)] = {
new LeanNumeric[(A, B)]{
override def zero = (nA.zero, nB.zero)
override def plus(x: (A, B), y: (A, B)): (A, B) = {
val (a1, b1) = x
val (a2, b2) = y
(nA.plus(a1, a2), nB.plus(b1, b2))
}
}
}
```

Si ponemos el implícito en scope y ejecutamos de nuevo el `planes.sum`…¡boom! Magia.

## Num…oide

No hace falta saber mucho de teoría de categorías para centrarse en que `Numeric[N]`, podrá ser mil cosas más, pero cumple dos propiedades:

• La operación append : La operación suma – dados n1 y n2 de tipo N, devuelve otro elemento N. Solo por disponer de esta operación (y el clossure, la asociatividad, la conmutativa, …) ya podemos considerarlo un Semigroup

• Y adicionalmente el elemento zero : genera el elemento neutro de la suma

¿en serio?¿No es evidente?…amigos, ¡el monoide ha vuelto a la ciudad!

## Implementación con `scalaz.Monoid`

Viendo que el tipo Numeric tiene al menos esas dos propiedades, re-implementamos el implícito haciendo uso de Monoid. Primero definimos el monoide para enteros y el monoide de las tuplas,
el cual requiere de un monoide para cada tipo que compone la tupla (easy peasy)

```import scalaz._

implicit object IntMonoid extends Monoid[Int]{
override def zero: Int = 0
override def append(f1: Int, f2: => Int): Int = f1 + f2
}

implicit def tupleMonoid[A,B](
implicit mA: Monoid[A],
mB: Monoid[B]): Monoid[(A,B)] = {
new Monoid[(A, B)] {
override def zero: (A, B) = (mA.zero, mB.zero)
override def append(f1: (A, B), f2: => (A, B)): (A, B) = {
val (a1, b1) = f1
lazy val (a2, b2) = f2
(mA.append(a1,a2), mB.append(b1, b2))
}
}
}
```

Hasta aquí bien, ¿correcto?

Implementemos ahora el implícito que nos proporcionará un Numeric siempre que exista un Monoid para el tipo

```implicit def numeric[T](
implicit m: Monoid[T]): Numeric[T] = {
new LeanNumeric[T]{
override def zero = m.zero
override def plus(x: T, y: T): T = m.append(x, y)
}
}

planes.sum //(6,7)
```

Y es increiblemente sencillo abstraerse de lo que demonios sea T (¿una tupla?, ¿un perro?, …).
Mientras sea un monoide, se puede definir un LeanNumeric.

Podéis encontrar aquí el gist resumen

Hasta la próxima locura funcional.

¡Agur de limón!