More lazy values, the State monad and other stateful stuff

In the previous post, we talked about lazy evaluation in Scala. At the end of that post, we asked an interesting question: Does a Lazy value hold an state?

24195622

In order to answer that question, we’ll try to define a type that could represent the Lazy values:

trait Lazy[T] {

  val evalF : () => T

  val value: Option[T] = None

}
object Lazy{
  def apply[T](f: => T): Lazy[T] =
    new Lazy[T]{ val evalF = () => f }
}

As you can see, our Lazy type is parameterized by some T type that represents the actual value type(Lazy[Int] would be the representation for a lazy integer).
Besides that, we can see that it’s composed of the two main Lazy type features:

  • evalF : Zero-parameter function that, when its ‘apply’ method is invoked, it evaluates the contained T expression.
  • value : The result value of the interpretation of the evalF function. This concrete part denotes the state in the Lazy type, and it only admit two possible values: None (not evaluated) or Some(t) (if it has been already evaluated and the result itself).

We’ve also added a companion object that defines the Lazy instance constructor that receives a by-name parameter that is returned as result of the evalF function.

e9a2295b3db9b45c8f5484a09033c1c71cf88e3375bb7ff60456bc81c29a4e04

Now the question is, how do we join both the evaluation function and the value that it returns so we can make Lazy an stateful type? We define the ‘eval’ function this way:

trait Lazy[T] { lzy =>

  val evalF : () => T

  val value: Option[T] = None

  def eval: (T, Lazy[T]) = {
    val evaluated = evalF.apply()
    evaluated -> new Lazy[T]{ mutated =>
      val evalF = lzy.evalF
      override val value = Some(evaluated)
      override def eval: (T, Lazy[T]) = 
        evaluated -> mutated
    }
  } 

}

The ‘eval’ function returns a two-element tuple:

  • The value result of evaluating the expression that stands for the lazy value.
  • a new Lazy value version that contains the new state: the T evaluation result.

If you take a closer look, what ‘eval’ method does in first place is to invoke the evalF function so it can retrieved the T value that remained until that point not-evaluated.
Once done, we return it as well as the new Lazy value version. This new version (let’s call it mutated version) will have in its ‘value’ attribute the result of having invoked the evalF function. In the same way, we change its eval method, so in future invocations the Lazy instance itself is returned instead of creating new instances (because it actually won’t change its state, like Scala’s lazy definitions work).

The interesting question that comes next is: is this an isolated case? Could anything else be defined as stateful? Let’s perform an abstraction exercise.

Looking for generics: stateful stuff

Let’s think about a simple stack:

sealed trait Stack[+T]
case object Empty extends Stack[Nothing]
case class NonEmpty[T](head: T, tail: Stack[T]) extends Stack

The implementation is really simple. But let’s focus in the Stack trait and in a hypothetical pop method that pops an element from the stack so it is returned as well as the rest of the stack:

sealed trait Stack[+T]{
  def pop(): (Option[T], Stack[T])
}

Does it sound familiar to you? It is mysteriously similar to

trait Lazy[T]{
  def eval: (T, Lazy[T])
}

isn’t it?

If we try to re-factor for getting a common trait between Lazy and Stack, we could define a much more abstract type called State:

trait State[S,T] {
  def apply(s: S): (T, S)
}

Simple but pretty: the State trait is parameterized by two types: S (state type) and T (info or additional element that is returned in the specified state mutation). Though it’s simple, it’s also a ver common pattern when designing Scala systems. There’s always something that holds certain state. And everything that has an state, it mutates. And if something mutates in a fancy and smart way…oh man.

That already exists…

24314442

All this story that seems to be created from a post-modern essay, has already been subject of study for people…that study stuff. Without going into greater detail, in ScalaZ library you can find the State monad that, apart from what was previously pointed, is fully-equipped with composability and everything that being a monad means (semigroup, monoid, …).

If we define our Lazy type with the State monad, we’ll get something similar to:

import scalaz.State

type Lazy[T] = (() => T, Option[T])

def Lazy[T](f: => T) = (() => f, None)

def eval[T] = State[Lazy[T], T]{
  case ((f, None)) => {
    val evaluated = f.apply()
    ((f, Some(evaluated)), evaluated)
  }
  case s@((_, Some(evaluated))) => (s, evaluated) 
}

When decrypting the egyptian hieroglyph, given the State[S,T] monad, we have that our S state will be a tuple composed of what exactly represents a lazy expression (that we also previously described):

type Lazy[T] = (() => T, Option[T])
  • A Function0 that represents the lazy evaluation of T
  • The T value that might have been evaluated or not

For building a Lazy value, we generate a tuple with a function that stands for the expression pointed with the by-name parameter of the Lazy method; and the None value (because the Lazy guy hasn’t been evaluated yet):

def Lazy[T](f: => T) = (() => f, None)

Last, but not least (it’s actually the most important part), we define the only state transition that is possible in this type: the evaluation. This is the key when designing any State type builder: how to model what out S type stands for and the possible state transitions that we might consider.

In the case of the Lazy type, we have two possible situations: the expression hasn’t been evaluated yet (in that case, we’ll evaluate it and we’ll return the same function and the result) or the expression has been already evaluated (in that case we won’t change the state at all and we’ll return the evaluation result):

def eval[T] = State[Lazy[T], T]{
  case ((f, None)) => {
    val evaluated = f.apply()
    ((f, Some(evaluated)), evaluated)
  }
  case s@((_, Some(evaluated))) => (s, evaluated) 
}

iZcUNxH

In order to check that we can still count on the initial features we described for the Lazy type (it can only be evaluated once, only when necessary, …) we check the following assertions:

var sideEffectDetector: Int = 0

val two = Lazy {
  sideEffectDetector += 1
  2
}

require(sideEffectDetector==0)

val (_, (evaluated, evaluated2)) = (for {
  evaluated <- eval[Int]
  evaluated2 <- eval[Int]
} yield (evaluated, evaluated2)).apply(two)

require(sideEffectDetector == 1)
require(evaluated == 2)
require(evaluated2 == 2)

Please, do notice that, as we mentioned before, what is defined inside the for-comprehension are the same transitions or steps that the state we decide will face. That means that we define the mutations that any S state will suffer. Once the recipe is defined, we apply it to the initial state we want.
In this particular case, we define as initial state a lazy integer that will hold the 2 value. For checking the amount of times that our Lazy guy is evaluated, we just add a very dummy var that will be used as a counter. After that, we define inside our recipe that the state must mutate twice by ussing the eval operation. Afterwards we’ll check that the expression of the Lazy block has only been evaluated once and that the returning value is the expected one.

I wish you the best tea for digesting all this crazy story 🙂
Please, feel free to add comments/menaces at the end of this post or even at our gitter channel.

See you on next post.
Peace out!

Más lazy’s, la mónada State y otras cosas con estado

En el anterior post hablábamos sobre la evaluación perezosa en Scala. Al final de dicho post, planteábamos una pregunta: ¿Un Lazy tiene estado?

24195622

Para responder a dicha pregunta, vamos a intentar definir un tipo que represente un valor Lazy como sigue:

trait Lazy[T] {

  val evalF : () => T

  val value: Option[T] = None

}
object Lazy{
  def apply[T](f: => T): Lazy[T] =
    new Lazy[T]{ val evalF = () => f }
}

Como se puede observar, nuestro tipo Lazy está parametrizado por un tipo T que representa el tipo del valor en cuestión(Lazy[Int] sería la representación de un entero perezoso).
Además, podemos ver que se compone de dos elementos principales que caracterizan a un Lazy:

  • evalF : Función de cero argumentos que, al invocar su método apply, evalúa la expresión de T contenida.
  • value : El valor resultante de la interpretación de la función evalF. Esta parte es la que denota el estado en el tipo Lazy, y solo admite dos posibles valores: None (no evaluado) o Some(t) (si ya ha sido evaluado y el resultado obtenido).

También hemos añadido un objeto companion que define el constructor de instancias Lazy que recibe un argumento by-name que se devuelve como resultado de la función evalF.

e9a2295b3db9b45c8f5484a09033c1c71cf88e3375bb7ff60456bc81c29a4e04

La cuestión ahora es: ¿Cómo unimos la función de evaluación con el valor que devuelve para hacer que Lazy mantenga un estado? Definiendo la función eval:

trait Lazy[T] { lzy =>

  val evalF : () => T

  val value: Option[T] = None

  def eval: (T, Lazy[T]) = {
    val evaluated = evalF.apply()
    evaluated -> new Lazy[T]{ mutated =>
      val evalF = lzy.evalF
      override val value = Some(evaluated)
      override def eval: (T, Lazy[T]) = 
        evaluated -> mutated
    }
  } 

}

La función eval devuelve una tupla de dos elementos:

  • el valor resultante de la evaluación de la expresión que representa el valor perezoso.
  • una nueva versión del valor Lazy que contiene el nuevo estado: el resultado de la evaluación.

Si os fijáis, lo que hace el método en primer lugar, es invocar a la función evalF para obtener el valor de tipo T que aún estaba sin evaluar.
Una vez hecho esto, lo devolvemos así como la nueva versión del elemento Lazy. Esta nueva versión (llamémosla mutated) tendrá en su atributo value el resultado de haber invocado a evalF. Del mismo modo, modificamos su método eval, para que en sucesivas invocaciones se devuelva a sí mismo y no genere nueva instancias que en realidad no varían su estado.

La cuestión interesante viene ahora: ¿es este un caso único? ¿Existen más ‘cosas’ que mantienen un estado? Hagamos un ejercicio de abstracción.

Buscando la genericidad: cosas-con-estado

Pensemos en el caso de una pila:

sealed trait Stack[+T]
case object Empty extends Stack[Nothing]
case class NonEmpty[T](head: T, tail: Stack[T]) extends Stack

La implementación sale casi sola. Pero centrémonos en el trait Stack y en un hipotético método pop que desapila un elemento que se devuelve junto al resto de la pila:

sealed trait Stack[+T]{
  def pop(): (Option[T], Stack[T])
}

¿Os suena de algo? ¿No se parece misteriosamente a

trait Lazy[T]{
  def eval: (T, Lazy[T])
}

…?

Si intentamos sacar factor común entre Lazy y Stack podríamos definir un tipo mucho más abstracto llamado State:

trait State[S,T] {
  def apply(s: S): (T, S)
}

Simple pero bello: el trait State está parametrizado por dos tipos: S (tipo de estado) y T (información o elemento adicional que devuelve cada vez que mutamos el estado). Aquí donde lo veis, se trata de un patrón muy recurrente al diseñar sistemas en Scala. Siempre hay algo que mantiene un estado. Y todo lo que tiene estado muta. Y si ese algo muta de manera segura y elegante…oh man.

Esto ya existe …

21495586

Toda esta historia que parece sacada de un ensayo post-moderno, resulta que ya ha sido objeto de estudio de personas que estudian cosas. Sin entrar en mucho detalle, en la librería ScalaZ podéis encontrar la mónada State que, además de lo descrito anteriormente, trae de serie un full-equipped de componibilidad y todo lo que conlleva ser Mónada (semigrupo, monoide, etc).

Si definimos nuestro tipo Lazy con la mónada State tenemos algo como:

import scalaz.State

type Lazy[T] = (() => T, Option[T])

def Lazy[T](f: => T) = (() => f, None)

def eval[T] = State[Lazy[T], T]{
  case ((f, None)) => {
    val evaluated = f.apply()
    ((f, Some(evaluated)), evaluated)
  }
  case s@((_, Some(evaluated))) => (s, evaluated) 
}

Al descomponer el jeroglífico egipcio arriba expuesto, dada la mónada State[S,T], nuestro estado S va a ser una tupla de lo que representa en el fondo a una evaluación perezosa:

type Lazy[T] = (() => T, Option[T])

y que más arriba hemos descrito:

  • Una Function0 que representa la evaluación demorada de T
  • El valor T que puede haberse evaluado o no

Para construir un valor Lazy, generamos una tupla con una función que recoge la expresión indicada por un argumento by-name del método Lazy y el valor None (porque aún no ha sido evaluado el Lazy):

def Lazy[T](f: => T) = (() => f, None)

Por último (y esta es la parte importante) definimos la única transición posible de estado que podemos concebir cuando hablamos de valores perezosos: la evaluación. Esta es la clave cuando diseñamos cualquier constructor de tipos que extiende de State: lo importante es modelar qué es nuestro tipo S y las transiciones de estado posibles.

Para el tipo Lazy, tenemos dos posibles casos: que la expresión aún no haya sido evaluada (en cuyo caso la evaluamos y devolvemos la misma función y el resultado) ó que la expresión ya haya sido evaluada (en cuyo caso dejamos el estado como está y devolvemos además el resultado de la evaluación):

def eval[T] = State[Lazy[T], T]{
  case ((f, None)) => {
    val evaluated = f.apply()
    ((f, Some(evaluated)), evaluated)
  }
  case s@((_, Some(evaluated))) => (s, evaluated) 
}

iZcUNxH

Para comprobar que seguimos contando con las mismas características iniciales para las que definimos el tipo Lazy (solo se evalúa una vez, solo se evalúa cuando es necesario, …) lanzamos las siguiente aserciones:

var sideEffectDetector: Int = 0

val two = Lazy {
  sideEffectDetector += 1
  2
}

require(sideEffectDetector==0)

val (_, (evaluated, evaluated2)) = (for {
  evaluated <- eval[Int]
  evaluated2 <- eval[Int]
} yield (evaluated, evaluated2)).apply(two)

require(sideEffectDetector == 1)
require(evaluated == 2)
require(evaluated2 == 2)

Si os fijáis, como antes comentábamos, lo que se define en la for-comprehension son las transiciones o pasos que va a enfrentar el estado que nosotros queramos. Es decir, definimos las mutaciones que sufrirá un estado S cualquiera. Una vez definida la ‘receta’, la aplicamos al estado inicial que nosotros queramos.
En este caso, definimos como estado inicial un perezoso número entero dos. Para comprobar el número de veces que se evalúa nuestro Lazy, añadimos un var muy dummy que funcionará a modo de contador. Luego definimos en nuestra ‘receta’ que el estado debe mutar dos veces mediante la operación eval. Posteriormente comprobamos que solo se ha ejecutado una vez la expresión del bloque Lazy y que el valor resultante de la expresión es el esperado.

Os deseo la mejor de las sales de frutas para digerir todo esto 🙂
Sentíos libres de añadir comentarios/amenazas en el post o en nuestro canal de gitter.

Hasta el próximo post.
¡Agur de limón!

Valores perezosos

Por si hubieras estado en un agujero durante los últimos 10 años y no lo supieras, Scala permite gestionar valores de evaluación perezosa.

image

En Scala, podemos definir un valor que no será evaluado hasta que se le llame de manera explícita. Por ejemplo:

lazy val myLazyInt: Int = { println("hi"); 2 }

Como podéis ver, usando la notación lazy hemos definido de manera perezosa un entero que vale 2 y que imprime un ‘hola’ cuando se evalúa.
Aparte de haber violado la gran ley de la programación funcional (transparencia referencial) debido al infame println, side effects, muerte, destrucción, blah blah …

anigif_enhanced-1822-1407333641-6

fijaros que si ejecutamos el fragmento de código, dicho println no se ejecuta.
No es sino hasta que otra expresión hace uso de nuestro entero perezoso, que no se ejecuta el bloque:

val result = myLazyInt + 3
//woa! somebody printed 'hi' and I have a brand new 5 inside 'result'

Una vez calculado myLazyInt, su valor no volverá a calcularse independientemente de cuantas veces se invoque. Es decir, ya no volverá a aparecer una misteriosa impresión que nos saluda:

lazy val myLazyInt: Int = { println("hi"); 2 }
myLazyInt
//"hi"
myLazyInt //nothing special happened now ...
myLazyInt //no matter how many times you invoke it...
myLazyInt //seriously, let it go...

Curioso. La cuestión es, si yo defino un valor perezoso y lo paso a un método como argumento, ¿qué ocurre? ¿Se evalúa en el momento en que se invoca la función?¿Quizás dentro del cuerpo de la función? Eso dependerá de cómo definas los argumentos de tu método.

Call by name vs. call by value

Al definir un método, por lo general, definimos sus argumentos ‘by-value’, es decir, esperamos que el argumento ya se encuentre evaluado al pasarse al método:

def myMethod(someInteger: Int): Int = {
  println("begin")
  val result = someInteger + 2
  println("end")
  result
}

Si invocamos nuestro método con un número entero cualquiera:

val n = 3
val result = myMethod(n)
//"begin"
//"end"
require(result == 5)

Imprimimos nuestras dos trazas y ya está. Hasta aquí nada nuevo.
¿Qué ocurre ahora si le pasamos nuestro valor perezoso?¿En qué momento imprimirá “hi”?¿Antes o después de las trazas del método?
Probemos:

myMethod(myLazyInt)
//"hi"
//"begin"
//"end"

Lo imprimió antes, es decir, nuestro valor perezoso se evaluó antes de invocarse el método. ¿Esto por qué ocurre? Porque Scala, para poder ejecutar myMethod, necesita saber el valor de someInteger.
Es un fastidio si queremos mantener la evaluación de myLazyInt perezosa hasta el final. ¿Cómo lo solucionamos? Pasando el argumento ‘by-name’, es decir, indicando cómo se resolverá en el futuro el valor, pero sin pasar el valor de manera explícita:

def myMethod(someInteger: => Int): Int = {
  println("begin")
  val result = someInteger + 2
  println("end")
  result
}

De esta forma (someInteger: => Int) indicamos que le vamos a nuestro método como argumento una expresión que devolverá un entero (que no un entero). Si ahora ejecutamos el método pasándole nuestro valor perezoso no-evaluado:

myMethod(myLazyInt)
//"begin"
//"hi"
//"end"

Voilà! No es hasta el último momento en que se requiere el valor dentro del método, que no se evalúa nuestro entero perezoso.

Otras formas de expresar laziness

Otra forma que nos puede resultar muy útil para denotar que una expresión se evalúa de manera perezosa, es el tipo Function0:

trait Function0[+R]{
  def apply(): R
}

Se trata de una función que recibe 0 argumentos y devuelve un tipo de salida. Normalmente se suele notar como sigue:

val f: () => Int =
  () => 2
f.apply() //2

No hay mucho más misterio…Una vez comprendido a grandes rasgos el funcionamiento de la evaluación perezosa en Scala, pasemos a cuestiones más interesantes…¿Un Lazy es algo con estado?
La respuesta (o más preguntas) en el próximo post.

¡Agur de limón!

Scala Jet Streams *

Sometimes, it’s usual that obtaining a method’s result which is, in fact, a collection; this collection has a huge size and besides, the process of computing it is really harsh or slow. On the other side, if we’re not going to process all its composing elements or if the collection is not finite (numerical series), we cannot use conventional structures to hold these functionality.

For example, let’s supose we’re trying to implement a near-real-time weather system . We can picture the query process like the typical infinite loop:


case class Weather(
  tempCelsius: Float, 
  humidity: Double)

def checkWeather(): Weather = {
  /* Some request to a web service 
   * or access some weather station device.
   * We'll mock it.
   */
   import scala.util.Random
   Weather(
     Random.nextFloat() * 100 % 40,
     Random.nextDouble() % 1)
}

type WeatherHandler[T] = Weather => T

val handler: WeatherHandler[Unit] = println

while(true){
  handler.apply(checkWeather())
}

Or we can assume that weather data is just an infinite collection of precise discrete data elements.


val weather: TraversableOnce[Weather] = ???

for (value <- weather) handler.apply(value)

This way, we could also change the nature of that collection by using a simple map for getting only Celsius temperatures, for example:

val extractTemperature: WeatherHandler[Float] = 
  _.tempCelsius

val onlyTemperatures: TraversableOnce[Float] = 
  weather.map(extractTemperature)

Let’s see which other ways we can use to achieve such behavior.

Iterators

A first approach could be implementing Iterator[+A]:

object weather extends Iterator[Weather]{

  def hasNext() = true

  def next(): Weather = checkWeather()

}

Given that our iterator will not certainly finish, the value of hasNext() is always true. Every time we invoke method next(), we will obtain a new value Weather-typed (this may involve invoking some web service or a request to a weather measure device).

Easy peasy. However, we can think about another kind of Scala collections, known as Streams…

Streams

We can think of Streams as sorted collections whose values are lazy evaluated. For example, if we describe the numerical serie that define integer numbers we will have that:

val integers: Stream[Int] = {

  def loop(v: Int): Stream[Int] = 
    v #:: loop(v + 1)

  loop(0)

}

As you can see, method #:: is used for adding an initial element to an existing Stream. If we run:

integers.head
integers.take(2).toArray

we will get both first stream’s element and two first elements.

We can invoke from this Stream every single method that apply to Scala collections (Traversable):

integers
  .filter(_ % 2 == 0)
  .take(5)
  .toArray //Array(0, 2, 4, 6, 8)

integers
  .takeWhile(_ < 5)
  .toArray //Array(0, 1, 2, 3, 4)

Look out! Until we invoke method toArray, streams that result of applying transformations to initial stream(filter, take, …) are not evaluated. Only we retrieving concrete values, transformation methods will be applied.

Now we have it, let’s use it with our weather service:

val weather: Stream[Weather] = {

  def loop(): Stream[Weather] = 
    checkWeather() #:: loop

  loop

}

We will get a Stream that will have an inner method loop() that defines the way of evaluating the Stream (invoking method checkWeather()).

And that’s all folks 🙂
Fear us, Al Roker!

Scala Jet Streams

A veces ocurre que, al obtener el resultado de un método que devuelve una colección, esta puede tener un tamaño considerable y además el proceso de computar dicha colección es lento o muy costoso. Por otra parte, si luego no vamos a procesar todos los elementos o si la colección no es finita (series numéricas), no podemos emplear colecciones convencionales.

Supongamos que queremos implementar un sistema de información atmosférica en tiempo real. Podemos ver el proceso de consulta como el típico bucle infinito:


case class Weather(
  tempCelsius: Float, 
  humidity: Double)

def checkWeather(): Weather = {
  /* Some request to a web service 
   * or access some weather station device.
   * We'll mock it.
   */
   import scala.util.Random
   Weather(
     Random.nextFloat() * 100 % 40,
     Random.nextDouble() % 1)
}

type WeatherHandler[T] = Weather => T

val handler: WeatherHandler[Unit] = println

while(true){
  handler.apply(checkWeather())
}

O podemos asumir que el tiempo atmosférico es una colección infinita de mediciones en momentos concretos.


val weather: TraversableOnce[Weather] = ???

for (value <- weather) handler.apply(value)

De esta manera, también podríamos modificar dicha colección mediante un map para obtener solo las temperaturas, por ejemplo:

val extractTemperature: WeatherHandler[Float] = 
  _.tempCelsius

val onlyTemperatures: TraversableOnce[Float] = 
  weather.map(extractTemperature)

Veamos de que maneras podemos obtener dicho comportamiento.

Iterators

Una primera aproximación podría ser implementar el trait Iterator[+A]:

object weather extends Iterator[Weather]{

  def hasNext() = true

  def next(): Weather = checkWeather()

}

Dado que nuestro iterador no termina nunca, el valor de hasNext() es siempre true. Cada vez que invoquemos al método next() obtendremos un nuevo valor de tipo Weather (esto puede implicar realizar una llamada a cierto web service o invocar un método de una central metereológica).

Fácil. No obstante, también podemos usar otro tipo de colecciones de Scala denominado Stream…

Streams

Podemos denominar a los Streams como colecciones ordenadas cuyos valores se evaluan de manera ‘lazy’.
Si por ejemplo definimos la serie númerica que compone los números enteros tenemos que:

val integers: Stream[Int] = {

  def loop(v: Int): Stream[Int] = 
    v #:: loop(v + 1)

  loop(0)

}

Como podéis ver, el símbolo #:: sirve para añadir un elemento al principio de un Stream. Si ejecutamos:

integers.head
integers.take(2).toArray

obtendremos el primer elemento del Stream y los dos primeros.

Podemos aplicar sobre este stream todas las operaciones que aplican a las colecciones de Scala (Traversable):

integers
  .filter(_ % 2 == 0)
  .take(5)
  .toArray //Array(0, 2, 4, 6, 8)

integers
  .takeWhile(_ < 5)
  .toArray //Array(0, 1, 2, 3, 4)

Fijaos que hasta que no invocamos el método toArray, no se evaluan los streams resultantes de las transformaciones aplicadas (filter, take, …)

Si ahora lo aplicamos a nuestro servicio meteorológico:

val weather: Stream[Weather] = {

  def loop(): Stream[Weather] = 
    checkWeather() #:: loop

  loop

}

obtenemos un Stream en cuyo interior definimos el método loop() que define como se va a evaluar el Stream (invocando al método checkWeather()).

Y nada más. Así de sencillo.

¡Que tiemble Maldonado!