Valores perezosos

Por si hubieras estado en un agujero durante los últimos 10 años y no lo supieras, Scala permite gestionar valores de evaluación perezosa.

image

En Scala, podemos definir un valor que no será evaluado hasta que se le llame de manera explícita. Por ejemplo:

lazy val myLazyInt: Int = { println("hi"); 2 }

Como podéis ver, usando la notación lazy hemos definido de manera perezosa un entero que vale 2 y que imprime un ‘hola’ cuando se evalúa.
Aparte de haber violado la gran ley de la programación funcional (transparencia referencial) debido al infame println, side effects, muerte, destrucción, blah blah …

anigif_enhanced-1822-1407333641-6

fijaros que si ejecutamos el fragmento de código, dicho println no se ejecuta.
No es sino hasta que otra expresión hace uso de nuestro entero perezoso, que no se ejecuta el bloque:

val result = myLazyInt + 3
//woa! somebody printed 'hi' and I have a brand new 5 inside 'result'

Una vez calculado myLazyInt, su valor no volverá a calcularse independientemente de cuantas veces se invoque. Es decir, ya no volverá a aparecer una misteriosa impresión que nos saluda:

lazy val myLazyInt: Int = { println("hi"); 2 }
myLazyInt
//"hi"
myLazyInt //nothing special happened now ...
myLazyInt //no matter how many times you invoke it...
myLazyInt //seriously, let it go...

Curioso. La cuestión es, si yo defino un valor perezoso y lo paso a un método como argumento, ¿qué ocurre? ¿Se evalúa en el momento en que se invoca la función?¿Quizás dentro del cuerpo de la función? Eso dependerá de cómo definas los argumentos de tu método.

Call by name vs. call by value

Al definir un método, por lo general, definimos sus argumentos ‘by-value’, es decir, esperamos que el argumento ya se encuentre evaluado al pasarse al método:

def myMethod(someInteger: Int): Int = {
  println("begin")
  val result = someInteger + 2
  println("end")
  result
}

Si invocamos nuestro método con un número entero cualquiera:

val n = 3
val result = myMethod(n)
//"begin"
//"end"
require(result == 5)

Imprimimos nuestras dos trazas y ya está. Hasta aquí nada nuevo.
¿Qué ocurre ahora si le pasamos nuestro valor perezoso?¿En qué momento imprimirá “hi”?¿Antes o después de las trazas del método?
Probemos:

myMethod(myLazyInt)
//"hi"
//"begin"
//"end"

Lo imprimió antes, es decir, nuestro valor perezoso se evaluó antes de invocarse el método. ¿Esto por qué ocurre? Porque Scala, para poder ejecutar myMethod, necesita saber el valor de someInteger.
Es un fastidio si queremos mantener la evaluación de myLazyInt perezosa hasta el final. ¿Cómo lo solucionamos? Pasando el argumento ‘by-name’, es decir, indicando cómo se resolverá en el futuro el valor, pero sin pasar el valor de manera explícita:

def myMethod(someInteger: => Int): Int = {
  println("begin")
  val result = someInteger + 2
  println("end")
  result
}

De esta forma (someInteger: => Int) indicamos que le vamos a nuestro método como argumento una expresión que devolverá un entero (que no un entero). Si ahora ejecutamos el método pasándole nuestro valor perezoso no-evaluado:

myMethod(myLazyInt)
//"begin"
//"hi"
//"end"

Voilà! No es hasta el último momento en que se requiere el valor dentro del método, que no se evalúa nuestro entero perezoso.

Otras formas de expresar laziness

Otra forma que nos puede resultar muy útil para denotar que una expresión se evalúa de manera perezosa, es el tipo Function0:

trait Function0[+R]{
  def apply(): R
}

Se trata de una función que recibe 0 argumentos y devuelve un tipo de salida. Normalmente se suele notar como sigue:

val f: () => Int =
  () => 2
f.apply() //2

No hay mucho más misterio…Una vez comprendido a grandes rasgos el funcionamiento de la evaluación perezosa en Scala, pasemos a cuestiones más interesantes…¿Un Lazy es algo con estado?
La respuesta (o más preguntas) en el próximo post.

¡Agur de limón!

Algrebraic Data Types in Scala

What a delightful idea to come back from vacation with batteries fully charged and with some wacky ideas around our minds to write about. Best of these came from the very influence of joints the moon.

ADT?

An Algebraic Data Type (TDA from now so we can save money for each word in WordPress) is just a way to express a data type (Cat, Dog, Prevarication) based on an algebra. And when we say ‘algebra’, we mean type sums and products (of Integers, Cats, Cars, Prevarications, …). For example:

Train = Locomotive + Wagon * Train

How do one read that? A train may be: a locomotive OR a wagon AND another train (that may be as well a wagon and another train, that may be as well a …).
Take a look at both disjunction and conjunction: the sum represents an OR, and the product represents an AND (like Boole algebra).

It’s also worthy to notice that, from this type definition you can infer a recursive pattern. With the Train type, the base case is definitively the Locomotive and, at the recursive case, we have a wagon and another train. As we’ll see later, this pattern is very frequent and makes easier the type definition.

And how are sum and product represented in Scala?

The easier way to represent the type sum (also called co-product), in a paradigm with polimorphism support (in general) and in Scala (in particular), is just the inheritance feature. If we have the following case:

sealed trait Animal
case object Cat extends Animal
case object Dog extends Animal

we’re indeed expressing a type co-product:

Animal = Cat + Dog

that is, an Animal can only be, a Cat, or a Dog.

Regarding the product, we could define it as the attribute set that compounds a certain type instance. For example,

case class Student(name: String, age: Int)

expressed as a product sum, would be as follows:

Student = String * Int

So, for building a Student instance, you need a String and an Int.

If we try now to materialize the previously exposed train model (with some additives) we’ll notice that

Wagon = String * Int
Train = Locomotive + Wagon * Train

is translated into Scala as

sealed trait Train
case object Locomotive extends Train
case class Wagon(model: String, passengers: Int)
case class Nexus(wagon: Wagon, next: Train)

So what is it good for?

hqdefault

…absolutely nothing, listen to me♩♪♫♬.
If you think, my fellow, that this is stuff that nobody uses, you haven’t thought about which scala.Prefef structures are defined this way. Lists, for example, as defined as:

trait List[+T]
case object Nil extends List[Nothing]
case class ::[T](head: T, tail: List[T]) extends List[T]

That is, a List can be, an empty one, or an element followed by another list.
If we express that idea in terms of products and co-products:

List[T] = EmptyList[T] + NonEmptyList[T]
NonEmptyList[T] = T * List[T]

Please, notice that, the case of the empt list (Nil) has a bizarre but beautiful implementation in Scala.

If we try to define an empty list for eeeeeeeeeevery single existing type, we would have to instantiate a Nil[Cat], a Nil[Dog], …
In order to avoid this, and having an only Nil, we make it extend from List[Nothing] that, as you’ll probably remember from other posts, Nothing extends from eeeeeeeeevery single existing type (both primitive and programmer defined). If we add the fact of List[T] being covariant at T, we’ll have an only object Nil that represents the empty lists for all types. Awesome, right?

odtUdEE

Example: Even numbers

In order to harden to this new way of thinking, let’s suppose the following challenge: how could we represent even numbers in Scala?

Requirements

If we’re not sophisticated enough and we trust a lil’ bit in runtime assertions, we could say that even numbers are defined as:

case class Even(value: Int) { 
  require(value%2==0, "it's not even")
}

But, if we try to create an Even with an odd integer number we’ll get a giant NOPE:

Even(1)
java.lang.IllegalArgumentException: requirement failed: it's not even
	at scala.Predef$.require(Predef.scala:233)
	at Even.<init>(<console>:7)

However this assertion won’t be verified until run-time, the moment when require is executed. Thus, our code could be compiled without being correct…
We can do it much better…

Next(Next(…))

Another option is to assume (and we won’t discuss about it) that zero is an even number, that we have infinite memory installed in our machine, that the overflow error doesn’t exist…

907958

In that, not so far, case (…), we could define even numbers as:

sealed abstract class Even(val value: Int)
case object Zero extends Even(0)
case class Next(previousEven: Even) 
  extends Even(2 + previousEven.value)

So, if we have a method that generate reservations for the Boat Love, that requires an even number of participants, we can use our brand new defined Even type:

def loveBoatReservation(
  peopleAmount: Even): Reservation = ???

Given there’s no way to build an Even from an integer that is not even, we avoid uncomfortable situations at runtime, where the amount of people that get on the Love Boat are odd. Otherwise, someone could be…

forever-alone-400x400

Recursive ADTs and its techniques

Once the data type is defined, let’s suppose we want to implement the sum of even numbers:

def sum(e1: Even, e2: Even): Even = ???

We handle several alternatives. One of them could be the quick-and-dirty one:

def sum(e1: Even, e2: Even): Event = 
  new Even(e1.value + e2.value){}

But take a closer look at the fact that we’re totally ignoring the constructors we’ve defined. If we want to use pattern matching over the result:

val four = new Even(4){}
sum(Zero, four) match {
  case Zero => 
    //it never gets inside this case!
  case Next(Next(Zero)) => 
    //OMG! IT DOESN'T FIT HERE EITHER!
}
scala.MatchError: $anon$1@649f2009 (of class $anon$1)

51067781

The other technique (much more sophisticated by the way) consists on invoking a recursive method that, for each call, it decreases the second even number, while it increases the first one. For doing so, we make use of Next apply(constructor) and unapply(extractor) methods:

def sum(e1: Even, e2: Even): Even = {
  @tailrec
  def rSum(ev1: Even, ev2: Even): (Even, Even) = {
    ev2 match {
      case Zero => (ev1, Zero)
      case Next(e) => rSum(Next(ev1), e)
    }
  }
  val (result, _) = rSum(e1, e2)
  result
}

Undeniably beautiful 🙂

Conclusions

Apart from becoming a lil’ bit crazier when reading back-from-vacation posts, we can extract several main conclusions from what we’ve read:

  • As we always say, every possible assertion that we can check at compile time instead of runtime, it’s saving time and headaches hunting bugs of software in production (which is more expensive and more keen to make heads roll).
  • Constructors are THE key. If we define an ADT, we can control that generated values of that type are correct by defining the proper constructors: Zero and Next. In both cases, we are certainly sure that even number rules are satisfied.
  • Methods that operate over recursive data types use to be recursive as well. And, apart from that, for generating values of the mentioned type (Even in our example) they should only use the existing constructor methods.

In a future post, we’ll talk about the relation between data types algebra and definition of formal grammars…or not.

Peace out!

Tipos de datos algebraicos en Scala

Qué mejor que volver de vacaciones con las pilas cargadas y con algún que otro tornillo suelto que nos empuje a escribir sobre temas que solo se te ocurren bajo el influjo de los puerros la luna.

¿TDA?

Un Tipo de Datos Algebraico(TDA en adelante para que no nos cobre WordPress por palabra) no es sino expresar un tipo de datos (Gato, Coche, Prevaricación) en base a un álgebra. Y cuando decimos álgebra nos referimos a sumas y productos de tipos (de Enteros, Gatos, Coches, Prevaricaciones, …). Por ejemplo:

Train = Locomotive + Wagon * Train

¿Esto como se lee? Un tren puede ser: una locomotora O un vagón Y otro tren (que a su vez puede ser otro vagón y otro tren, que a su vez …).
Fijaos en la disyunción y la conjunción: la suma suele representar un OR y el producto un AND (como en el álgebra de Boole).

Es interesante también darse cuenta que, de esta definición de tipos, se puede inferir un patrón recursivo. En el caso del tren, el caso base es la locomotora y en el caso recursivo tenemos un vagón y otro tren. Como veremos más adelante, este patrón se repite y facilita la definición de tipos.

¿Y cómo se representa la suma y el producto en Scala?

La forma más sencilla de representar la suma (también llamada coproducto) de tipos, en un paradigma que soporte polimorfismo (en general) y en Scala (en particular), no es sino la herencia. Si tenemos el siguiente caso:

sealed trait Animal
case object Cat extends Animal
case object Dog extends Animal

estamos formulando un coproducto de tipos:

Animal = Cat + Dog

es decir, un Animal solamente puede ser, o un Cat, o un Dog.

En cuanto al producto, podríamos definirlo como el conjunto de atributos que componen una instancia de un cierto tipo. Por ejemplo,

case class Student(name: String, age: Int)

expresado como suma de productos, es como sigue:

Student = String * Int

Es decir, para construir el tipo Student hace falta un String y un Int.

Si ahora tratamos de bajar a tierra el modelo de tren antes propuesto (con algún aditivo) tendremos que

Wagon = String * Int
Train = Locomotive + Wagon * Train

se traduce en Scala a

sealed trait Train
case object Locomotive extends Train
case class Wagon(model: String, passengers: Int)
case class Nexus(wagon: Wagon, next: Train)

¿Y esto para qué?

Si piensas, amigo, que esto son cosas que nadie usa, es porque no te paraste a pensar en qué estructuras de scala.predef se definen de esta forma. Las listas (List) por ejemplo se definen como:

trait List[+T]
case object Nil extends List[Nothing]
case class ::[T](head: T, tail: List[T]) extends List[T]

Es decir, una lista puede ser, o lista vacía, o un elemento seguido de otra lista.
Si lo expresamos en función de productos y coproductos:

List[T] = EmptyList[T] + NonEmptyList[T]
NonEmptyList[T] = T * List[T]

Fijaos que el caso de la lista vacía (Nil) tiene una implementación muy bonita en Scala.

Si tenemos que definir una lista vacía para tooooodos los tipos existentes, tendríamos que instanciar un Nil[Cat], Nil[Dog], …
Para evitar eso, y tener un único Nil, hacemos que este extienda de List[Nothing] que, como recordareis de otros posts, Nothing extiende de tooooodos los tipos (tanto primitivos como definidos por el programador). Si a esto le sumamos que List[T] es covariante en T, tenemos un único objeto Nil que representa las listas vacías de tooooodos los tipos. Alucinante, ¿no?

odtUdEE

Ejemplo: Números pares

Para afianzar esta novedosa forma de pensar, pongámonos en la siguiente tesitura, ¿cómo podríamos representar los números pares en Scala?

Requirements

Si somos poco delicados y confiamos más en las aserciones en tiempo de runtime, podríamos decir que los números pares son:

case class Even(value: Int) { 
  require(value%2==0, "it's not even")
}

Si intentamos crear un Even con un número impar nos dirá que nope:

Even(1)
java.lang.IllegalArgumentException: requirement failed: it's not even
	at scala.Predef$.require(Predef.scala:233)
	at Even.<init>(<console>:7)

Sin embargo esta comprobación no se realiza hasta el momento de ejecución, que es cuando se comprueba el require. Por lo que nuestro código podría estar compilando pero no ser correcto…
Podemos hacerlo mejor…

Next(Next(…))

Otra opción es asumir (y no vamos a discutir sobre ello) que el número 0 es par, que tenemos memoria infinita en nuestra máquina, que no existe el overflow, …

907958

En ese caso, para nada alejado de la realidad (…) podríamos definir los números enteros pares como:

sealed abstract class Even(val value: Int)
case object Zero extends Even(0)
case class Next(previousEven: Even) 
  extends Even(2 + previousEven.value)

De manera que si tenemos un método que genera una reserva para el barco del amor que requiere de un número par de participantes, podemos usar nuestro recién definido tipo Even:

def loveBoatReservation(
  peopleAmount: Even): Reservation = ???

Dado que no hay forma de construir un Even a partir de un entero que no sea par, evitamos situaciones en runtime en las que el número de personas que se montan en el barco sean impares. Sino siempre habría alguien …

forever-alone-400x400

Mecánica de métodos sobre TDAs recursivos

Una vez definido el tipo de datos, supongamos que queremos implementar la suma de números pares:

def sum(e1: Even, e2: Even): Even = ???

Tenemos varias alternativas. Una de ellas puede ser la quick-and-dirty:

def sum(e1: Even, e2: Even): Event = 
  new Even(e1.value + e2.value){}

Pero fijaos que estamos pasando un kilo de los constructores que hemos definido. Si queremos hacer pattern matching ahora sobre el resultado:

val four = new Even(4){}
sum(Zero, four) match {
  case Zero => 
    //it never gets inside this case!
  case Next(Next(Zero)) => 
    //OMG! IT DOESN'T FIT HERE EITHER!
}
scala.MatchError: $anon$1@649f2009 (of class $anon$1)

51067781

La otra técnica (algo más fina por otra parte) consiste en lanzar un método recursivo que, en cada llamada, vaya disminuyendo el segundo número par mientras que aumenta el primero. Para ello hacemos uso del constructor y extractor Next:

def sum(e1: Even, e2: Even): Even = {
  @tailrec
  def rSum(ev1: Even, ev2: Even): (Even, Even) = {
    ev2 match {
      case Zero => (ev1, Zero)
      case Next(e) => rSum(Next(ev1), e)
    }
  }
  val (result, _) = rSum(e1, e2)
  result
}

Innegablemente bello 🙂

Conclusiones

Pues a parte de que los posts de vuelta de vacaciones suelen ser para volverse majara, saquemos varias conclusiones principales:

  • Como siempre decimos, que toda comprobación que nos podamos llevar de runtime a tiempo de compilación es un ahorro de quebraderos de cabeza cazando fallos con software en producción (lo cual es caro y es más fácil que haga rodar cabezas).
  • Que los constructores son la clave. Si definimos un TDA sobre los números pares, podemos controlar que los valores generados son correctos definiendo los constructores adecuados: el Zero y el Next. En ambos casos, tenemos la certeza de que se cumplen las leyes de los números enteros.
  • Que los métodos que operan sobre tipos de datos recursivos suelen ser, a menudo, recursivos también. Y no solo eso, sino que para poder generar valores del tipo en cuestión (Even en nuestro caso) solo deberían hacer uso de los constructores ya existentes.

En otro post hablaremos sobre la relación del álgebra de tipos y la definición de gramáticas formales…o no.

¡Agur de limón!

Scala, Scala and nothing more

After so many posts on Scala, many snippets of code, and many weird concepts, there comes a post that had been pending since almost the beginning of this blog. What resources exist to learn Scala? Well … now we show our favorites.

yoda_meme

Books: a good starting point 🙂

  • Programming in Scala: a classic. Written by the very Odersky and with the third edition hot off the press.
  • Funcional Programming in Scala (also known, in an effort of originality and simplicity, as the red book). A book that opens the mind to the functional paradigm and it is advisable not only for people who want to program in Scala, but for people who are interested in functional programming.

Courses: to deepen a bit more.

  • On the online courses, Coursera and the new specialization of functional programming in Scala they have all the monopoly. It consists of 4 courses + 1 project and discusses in depth the most important aspects of Scala.
  • Furthermore, scala-exercises allows us to practice in a faster way, but no less effective. Fully recommended.

Events: not only to drink beer  😉

  • Scala Days : Undoubtedly the most important annual convention about Scala. Since a year, there are two conventions at year: one in America and one in Europe. In addition, all the videos of the talks are published 🙂
  • Scala World: UK convention with a warm welcome and where you can hear and see some of the biggest Scala gurus.
  • Scala eXchange: another of the best known conventions. It takes place on December in London.

These are the resources that we know and that we found interesting. Without doubt, there are many more that we left unsaid. If you missing some resource on this list, any contribution is welcome 🙂

Scala, Scala, y nada más.

Después de tantos posts sobre Scala, de tantos snippets de código, y tantos conceptos rarunos, llega un post que teníamos pendiente desde casi el comienzo de este blog. ¿Qué recursos existen para profundizar en Scala? Pues bien…ahora os contamos nuestros favoritos.

yoda_meme

Libros: un buen punto de partida 🙂

  • Programming in Scala: un clásico. Escrito por el mismísimo Odersky y con la tercera edición recién sacada del horno.
  • Funcional Programming in Scala (también conocido, en un afán de originalidad y sencillez, como el libro rojo ). Un libro que abre la mente al paradigma funcional y que es recomendable no solo para gente que quiera programar en Scala, sino para gente que le interese la programación funcional.

Cursos: para dar un poco más de profundidad.

  • En el tema de los cursos online, Coursera y la nueva especialización de programación  funcional en Scala tienen todo el monopolio. Consta de 4 cursos + 1 proyecto y aborda en profundidad los aspectos más importantes del lenguaje.
  • Por otro lado, scala-exercises nos permite practicar de una forma más rápida, pero no por eso menos eficaz. Totalmente recomendable.

Eventos: no solo para beber cerveza  😉

  • Scala Days : sin duda la convención anual más importante de Scala. Desde hace un año se realizan dos convenciones, una en América y otra en Europa. Además, publican los vídeos de todas sus charlas 🙂
  • Scala World: convención en UK con una gran acogida y en la que puedes escuchar y ver a algunos de los mayores gurús de Scala.
  • Scala eXchange: otra de las convenciones más conocidas. Se realiza en Londres en el mes de Diciembre.

Estos son los recursos que conocemos y que nos han parecido interesante. Sin duda hay muchos más que nos dejamos en el tintero. Si echas en falta alguno en esta lista, cualquier aportación será bienvenida 🙂