Teoría de Cate-movidas: Functores y pepinos

Que manía con las categorías. ¿Nos pagan por hablar de ello? No. ¿Nos gustaría que lo hiciesen? Es muy probable. En otras ocasiones hablábamos de monoides y mónadas, pero esta vez le toca el turno a los functores. Los functores están por todas partes y no son los padres: podemos demostrarlo. Antes de detallar sus variantes, centrémonos en los conceptos clave.

¿Qué es un morfismo?

Una transformación entre dos espacios, un cambio, una mutación.
¿En Scala? Una función:

val f: A => B

¿Qué es un functor?

Respuesta corta y simple: el comportamiento que define, para un constructor de tipos F[A], el método ‘map’:

trait Functor[F[_]]{
  def map[A, B](fA: F[A])(f: A => B): F[B]
}

Existen functores para List, Option, Future, Try, …

object ListFunctor extends Functor[List]{
  def map[A, B](fA: List[A])(f: A => B): List[B] =
    fA match {
      case Nil => Nil
      case (head :: rest) =>
        f(head) +: this.map(rest)(f)
    }
}
object OptionFunctor extends Functor[Option]{
  def map[A, B](fA: Option[A])(f: A => B): Option[B] =
    fA match {
      case None => None
      case Option(a) => Option(f(a))
    }
}
//...

En realidad, a parte del famoso método map, deben cumplir un par de propiedades más:

  • Morfismo identidad: F[Id[A]] = Id[F[A]]. Por poner un ejemplo, siendo identity la función identidad definida en Scala, Option(identity(1)) == identity(Option(1))
  • Composición de morfismos: Si tenemos dos morfismos f: A => B y g: B => C, se debe cumplir que F[f o g] = F[f] o F[g]. Que no es tan complicado si lo vemos con
    val f: Int => String = _.toString
    val g: String => Boolean = _.length > 1
    val l: List[Int] = List(1,20,3)
    l.map(f).map(g) ==
      l.map(f andThen g) ==
      l.map(n => g(f(n)))
    //List(false, true, false)
    

Pero a grandes rasgos, podemos pensar en los functores ordinarios como la descripción de como, en una cadena de producción o montaje F[_], se permite realizar transformaciones de manera que, para argumento un A, y usando un morfismo (una función de transformación) A => B, obtenemos un B dentro de la misma cadena de producción F[_]

Clasificación de functores

Los functores ordinarios también son denóminados co-variantes (para ser diferenciados de los contravariantes y de los invariantes). Veamos a continuación qué caracteriza a estos otros tipos de functor:

Functor contravariante

La definición formal dice que un functor para F[_] es contravariante si, en vez el método map, tiene definida la operación contramap:

trait Contravariant[F[_]]{
  def contramap[A, B](fA: F[A])(f: B => A): F[B]
}

Esto es, si existe una función B => A, el functor define F[A] => F[B].

…venga va, sin ser hardcore, ponemos un ejemplo.

Imagina una type class que sabe comparar elementos de un cierto tipo:

type Comparison = Int
val Greater = 1
val Equal = 0
val Lower = -1

trait Comparator[T]{
  def compare(t1: T, t2: T): Comparison
}

Imagina del mismo modo que yo dispongo de un comparador de números enteros (y aquí viene el quid de la cuestión):

si yo se comparar enteros y se como transformar ‘pepinos’ a enteros, ya se como comparar ‘pepinos’

object ComparatorF extends Contravariant[Comparator]{
  def contramap[A, B]
    (fA: Comparator[A])
    (f: B => A): Comparator[B] =
    new Comparator[B]{
      def compare(t1: B, t2: B): Comparison =
        fA.compare(f(t1), f(t2))
    }
}

Y ahora el archi-esperado ejemplo de generar un functor contravariante para pepinos:

trait Cucumber
val intC: Comparator[Int] = ???
val cucumberToInt: Cucumber => Int = ???
val cucumberC: Comparator[Cucumber] =
  ComparatorF.contramap(intC)(cucumberToInt)

cucumberC.compare(new Cucumber{}, new Cucumber{})

…sublime…

Functor invariante

Los functores invariantes para F[_] se caracterizan por tener un método denominado imap como sigue:

trait Invariant[F[_]] {
  def imap[A, B](fA: F[A])(f: A => B)(g: B => A): F[B]
}

…otra vez en el valle de la duda después de esta definición, lo se y pido paciencia. Se ve mucho mejor con otro ejemplo.

Imagina una type class que sabe almacenar objetos en una base de datos (MongoDB, por ejemplo):

case class ObjectId(hash: String)

trait DataStorage[T]{
  def store(t: T): ObjectId
  def get(id: ObjectId): T
}

Olvidándonos de los posibles efectos (excepciones, timeouts, etc) para no liar el ejemplo, podemos definir un functor invariante para DataStorage que permita almacenar cualquier elemento:

object DataStorageF extends Invariant[DataStorage]{
  def invariant[A, B]
    (fA: DataStorage[A])
    (f: A => B)
    (g: B => A): DataStorage[B] = {

    new DataStorage[B]{
      def store(b: B): Option[ObjectId] =
        fA.store(g(b))
      def get(id: ObjectId): B =
        f(fA.get(id))
    }
  }
}

Por lo tanto…

Si yo se como almacenar enteros y se transformar pepinos a enteros (y viceversa),
¡se cómo almacenar pepinos!

val intDS: DataStorage[Int] = ???
val cucumberToInt: Cucumber => Int = ???
val intToCucumber: Int => Cucumber = ???
val cucumberDS: DataStorage[Cucumber] =
  DataStorageF
    .imap(intDS)(intToCucumber)(cucumberToInt)

val id = cucumberDS.store(new Cucumber{})
val originalCucumber = cucumberDS.get(id)

No podemos decir que esto sea todo, pero sí puede ser una buena introducción al maravilloso mundo de los functores. Nos vemos en el próximo post. ‘Like’ y comparte si te gusta almacenar pepinos.
¡Agur de limón!

Fuentes:
[1] Advanced Scala with Cats – Noel Welsh & Dave Gurnell
[2] Variance and functors – Typelevel blog

Anuncios

One thought on “Teoría de Cate-movidas: Functores y pepinos

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s